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ABSTRACT
Market-based electricity pricing provides consumers an op-
portunity to lower their electric bill by shifting consump-
tion to low price periods. In this paper, we explore how to
lower electric bills without requiring consumer involvement
using an intelligent charging system, called SmartCharge,
and an on-site battery array to store low-cost energy for use
during high-cost periods. SmartCharge’s algorithm reduces
electricity costs by determining when to switch the home’s
power supply between the grid and the battery array. The
algorithm leverages a prediction model we develop, which
forecasts future demand using statistical machine learning
techniques. We evaluate SmartCharge in simulation using
data from real homes to quantify its potential to lower bills
in a range of scenarios. We show that typical savings to-
day are 10-15%, but increase linearly with rising electricity
prices. We also find that SmartCharge deployed at only 22%
of 435 homes reduces the aggregate demand peak by 20%.
Finally, we analyze SmartCharge’s installation and mainte-
nance costs. Our analysis shows that battery advancements,
combined with an expected rise in electricity prices, have the
potential to make the return on investment positive for the
average home within the next few years.

Categories and Subject Descriptors
J.7 [Computer Applications]: Computers in Other Sys-
tems—Command and control

General Terms
Design, Measurement, Management

Keywords
Energy, Battery, Electricity, Grid

1. INTRODUCTION
The cost of generating electricity is rising. The average

price of electricity for residential consumers in the United
States has risen 29% over the past five years [25]. De-
spite energy-efficiency improvements, residential electricity
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demand in the U.S. has increased 49% over the last twenty
years, due to a steady rise in the number of household
electrical devices. These facts combined with stagnant in-
come growth over the past decade—down 1.9% in inflation-
adjusted USD [8]—have resulted in electricity costs consum-
ing a growing share of household budgets. The average home
electricity bill now accounts for 2.8% of household income,
and has risen by $300 to $1,419 per year over the last twenty
years (in inflation-adjusted USD) [4]. Since today’s prices do
not incorporate negative externalities associated with elec-
tricity generation, such as air pollution and climate change,
its real cost to society is likely much higher than today’s
prices reflect. Studies suggest that recent price and demand
increases will continue into the foreseeable future.

Of course, the most direct way for consumers to cut their
electricity bill is to simply use less electricity. Unfortunately,
as the trends above indicate, rising prices have not yet mo-
tivated consumers to conserve power. Another important
way to cut bills is to reduce demand peaks, which have a
disproportionate affect on generation costs. Peak demands
drive both capital expenses—by dictating the number of
power plants, transmission lines, and substations—and op-
erational expenses, since “peaking” generators are generally
dirtier and costlier to operate than baseload generators [15].
To illustrate the impact of peak demands, Figure 1 shows
the marginal cost of operating generators in the southeast
U.S., and demonstrates that the marginal cost for generat-
ing electricity is non-linear and increases rapidly as utilities
move up the dispatch stack to satisfy increasing demand [11].
Peak demands also result in significantly higher transmis-
sion losses, since these losses are proportional to the square
of current. Thus, even small reductions in peak usage have
a significant impact on generation costs. Recent estimates
attribute 10-20% of generation costs in the U.S. to servicing
only the top 100 hours of peak demand each year [18].

In an attempt to reduce peak demand, many utilities are
transitioning from conventional fixed-rate pricing models,
which charge a flat fee per kilowatt-hour (kWh), to new
market-based schemes, e.g., real-time or time-of-use pricing,
which more accurately reflect electricity’s cost by raising
and lowering prices during peak and off-peak periods, re-
spectively. For instance, Illinois already requires utilities to
provide residential customers the option of using hourly elec-
tricity prices based directly on wholesale prices [23], while
Ontario charges residential customers based on a time-of-use
scheme with three different price tiers (off-, mid-, and on-
peak) each day [21]. We envision utilities widening the use
of market-based pricing in the future to reduce generation
costs, as demands and prices increase.

Unfortunately, market-based electricity pricing places a
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Figure 1: The marginal cost to generate electricity
increases as utilities dispatch additional generators
to satisfy increasing demand. Data from [11].

significant burden on consumers to continuously monitor
prices, and then alter their usage to reduce costs without
disrupting normal daily activities. The task is challenging,
since most consumers have no idea how much power indi-
vidual devices consume, and generally do not want to think
about or plan their electricity usage. Thus, consumers may
not respond appropriately to price changes, and the grid may
not gain the cost-saving benefits of peak reduction. Further,
as we show in Section 5.2, even if consumers respond appro-
priately, today’s market-based pricing plans may actually
increase grid peaks (and costs) if demand is highly elastic
and responsive to price changes. The difficulty in regulating
demand may also discourage consumers from opting into
market-based pricing plans. For instance, in Illinois, less
than one percent of consumers have opted to switch from
fixed-rate to market-based pricing [2].

To address the problem, we propose SmartCharge, an in-
telligent charging and discharging system that determines
when and how much to store low-cost energy for use dur-
ing high-cost periods based on expectations of future de-
mand. SmartCharge’s primary benefit is that it does not
require consumers to alter their electricity usage to reduce
their electric bill under market-based pricing plans. Instead,
SmartCharge reduces costs by determining when to switch
a home between using (and storing) grid power and using
previously stored power from a battery array. We frame
the cost-minimization problem as a linear optimization that
leverages knowledge of next-day electricity prices and us-
age patterns. Since electricity prices are largely set in day-
ahead markets [19], next-day prices are well-known. We pre-
dict next-day consumption by developing statistical machine
learning (ML) to build a model based on important predic-
tive metrics, such as weather, time-of-day, day-of-week, etc.

Our hypothesis is that combining SmartCharge with
market-based pricing is capable of reducing electricity costs
for consumers over the short- and long-term. Over the short-
term, consumers save by storing energy during low-cost peri-
ods for use during high-cost periods. Over the long-term, as
SmartCharge penetration increases, average prices will fall
due to significant reductions in peak demand. However, as
we discuss in Section 5.2, to attain maintain peak reduction
at scale using SmartCharge, utilities will need to modify to-
day’s market-based electricity pricing plans, which do not
properly incentivize energy storage at scale. In evaluating
our hypothesis, we make the following contributions:
SmartCharge Design. We detail SmartCharge’s architec-
ture, which includes a battery array and charger, DC→AC
inverter, and power transfer switch, as well as a gateway
server and energy/voltage sensors to monitor home elec-
tricity consumption and the battery array’s state of charge.
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Figure 2: A depiction of SmartCharge’s archi-
tecture, including its battery array and charger,
DC→AC inverter, power transfer switch, en-
ergy/voltage sensors, and gateway server.

We then outline the linear optimization problem the gate-
way server solves each day to reduce costs by switching the
home’s power source between the grid and a battery array.
ML-based Consumption Prediction. Since solving
SmartCharge’s optimization problem requires knowledge of
next-day consumption, we develop a ML-based prediction
technique that learns the unique characteristics of a home’s
usage pattern over time. We show that our approach has an
average error of 5.75% in a case study of a real home over a
40 day period. Our evaluation shows that solving the opti-
mization using ML-based predictions comes within 8-12% of
an oracle with perfect knowledge of next-day consumption.
Implementation and Evaluation. We evaluate
SmartCharge in both simulation, using power data from real
homes and existing market-based residential pricing plans,
and with a small-scale prototype using a home UPS sys-
tem and a few household appliances. Our results show that
SmartCharge is able to reduce a typical home’s electric bill
by 10-15% using realistic battery capacities. We also show
that, if widely deployed, SmartCharge reduces grid demand
peaks by 20%. Finally, we analyze SmartCharge’s instal-
lation and maintenance costs, and show that recent bat-
tery advancements combined with modest (and expected)
price increases may make SmartCharge’s return on invest-
ment positive within the next few years.

2. SMARTCHARGE ARCHITECTURE
Figure 2 depicts SmartCharge’s architecture, which uti-

lizes a power transfer switch that is able to toggle the power
source for the home’s electrical panel between the grid and
a DC→AC inverter connected to a battery array. A gate-
way server continuously monitors 1) electricity prices via
the Internet, 2) household consumption via an in-panel en-
ergy monitor, and 3) the battery’s state of charge via volt-
age sensors. Before the start of each day, the server solves
an optimization problem based on the next day’s expected
electricity prices, the home’s expected consumption pattern,
and the battery array’s capacity and current state of charge,
to determine when to switch the home’s power source be-
tween the grid and the battery array. The server also de-
termines when to charge the battery array when the home
uses grid power. In §6, we provide a detailed estimate of
SmartCharge’s installation and maintenance costs based on



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

12am 7am 11am 5pm7pm 11pm

H
ou

rly
 R

at
e 

($
/k

w
H

)

Hour of Day

Ontario TOU (Winter 2011)
Illinois Market (August 1st, 2011)

Figure 3: Example TOU and hourly market-based
rate plans in Ontario and Illinois, respectively.

price quotes for widely-available commercial products.
Most utilities still use fixed-rate plans for residential cus-

tomers that charge a flat fee per kilowatt-hour (kWh) at all
times. In the past, market-based pricing plans were not pos-
sible, since the simple electromechanical meters installed at
homes had to be read manually, e.g., once per month, and
were unable to record when homes consumed power. How-
ever, utilities are in the process of replacing these old meters
with smart meters that enable them to monitor electricity
consumption in real time at fine granularities, e.g., every
hour or less. As a result, utilities are increasingly experi-
menting with market-based pricing plans for their residen-
tial customers. To cut electricity bills, SmartCharge relies
on residential market-based pricing that varies the price of
electricity within each day to more accurately reflect its cost.
We expect many utilities to offer such plans in the future.

There are multiple variants of market-based pricing. Fig-
ure 3 shows rates over a single day for both a time-of-use
(TOU) pricing plan used in Ontario, and a real-time pric-
ing plan used in Illinois. TOU plans divide the day into
a small number of periods with different rates. The price
within each period is known in advance and reset rarely,
typically every month or season. For example, the Ontario
Electric Board divides the day into four periods (7pm-7am,
7am-11am, 11am-5pm, and 5pm-7pm) and charges either a
off-peak-, mid-peak, or on-peak rate (6.2¢/kWh, 9.2¢/kWh,
or 10.8 ¢/kWh) each period [21]. The long multi-hour pe-
riods and well-known rates enable consumers to plan their
usage across reasonable time-scales and adopt low-cost daily
routines, e.g., running the dishwasher after 7pm each day.
However, while TOU pricing more accurately reflects costs
than fixed-rate pricing, it is not truly market-based since ac-
tual prices vary continuously based on supply and demand.

TOU pricing is a compromise between fixed-rate pricing
and real-time pricing, where prices vary each hour (or less)
and reflect the true market price of electricity. Unfortu-
nately, real-time pricing complicates planning. Since prices
may change significantly each hour, consumers must contin-
uously monitor prices and adjust their daily routines, which
may now have different costs on different days. Illinois was
the first U.S. state to require utilities to offer residential con-
sumers the option of using real-time pricing plans. To facil-
itate planning, Illinois utilities provide simple web pages,
e.g., www.powersmartpricing.org/chart, to view next-day
prices each evening. While some utilities use real-time prices
not known in advance, most utilities use day-ahead market
prices, which are are set one day in advance. Since utilities
purchase most of their electricity in day-ahead markets, e.g.,
98% in New York [19], next-day prices are well-known.

SmartCharge works well with both TOU and real-time
pricing plans. In either case, SmartCharge solves the op-
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Figure 4: Example from January 3rd with and with-
out SmartCharge using Illinois prices from Figure 3.

timization problem detailed in the next section at the end
of each day to determine when to switch between grid and
battery power to minimize costs, based on next-day prices
and expected next-day consumption. The number of periods
each day—four in Ontario or twenty-four in Illinois—simply
changes a parameter in the optimization’s constraints.

3. SMARTCHARGE ALGORITHM
SmartCharge cuts electricity bills by storing energy during

low-cost periods for use during high-cost periods. The total
possible savings each day is a function of both the home’s
rate plan and its pattern of consumption. Throughout the
paper, we use power data from a real home we have mon-
itored for the past two years as a case study to illustrate
SmartCharge’s potential benefits. The home is an average 3
bedroom, 2 bath house in Massachusetts with 1700 square
feet. To measure electricity, we instrument the home with
an eGauge energy meter [10], which installs in the electri-
cal panel by wrapping two 100A current transducers around
each leg of the home’s split-leg incoming power. We have
monitored the home’s power consumption every second for
the past two years. In 2010, the home consumed 8240kWh
at a cost of $1203.53 (or 22.6 kWh/day), while in 2011 it con-
sumed 9732kWh at a cost of $1339.51 (or 26.7 kWh/day).
The costs are near the $1419 average U.S. home electric bill.

3.1 Potential Benefits
To better understand SmartCharge’s potential for savings,

it is useful to consider a worst-case scenario where 100% of
the home’s consumption occurs during the day’s highest rate
period. Consider our home’s hourly electricity use on Jan-
uary 3rd, 2012, as depicted in Figure 4. On this day, the
home consumed 43.7 kWh, primarily due to the occupants
running multiple laundry loads after returning from a holi-
day trip. With Ontario’s TOU plan, if the home had con-
sumed 100% of the day’s power during the 10.8¢/kWh on-
peak period, and SmartCharge shifted it all to the 6.2¢/kWh
off-peak period, then the maximum savings is 43%, or $2.01
(from $4.72 to $2.71) for the day. Since the home did not
consume 100% of its power during the on-peak period, the
maximum realizable savings (if we shift all of the on-peak
and mid-peak consumption to the off-peak period) is only
30%, a decrease of $1.14 for the day (from $3.85 to $2.71).
In practice, battery and inverter inefficiencies, which com-
bined are ∼80% efficient, reduce the savings further, to $0.99
for the day This per-day savings rate translates to a yearly
savings of $361.35, if the system achieves it every day.

Real-time pricing plans, as in Illinois, offer even more po-
tential for savings, since the difference between the highest
and lowest rate is significantly larger than a typical TOU



plan. For example, on August 1st, 2011 in Illinois, the aver-
age rate from 2pm-7pm was 10.42¢/kWh, while the average
rate from 1am-6am was 2.36¢/kWh. The highest rate of
11.9¢/kWh occurs at 4pm, and is over 5X larger than the
lowest rate of 2.3¢/kWh from 2am-5am. In this case, with
January 3rd’s consumption pattern and battery/inverter in-
efficiencies, SmartCharge is still capable of reducing costs
by 59%, or $1.78 (from $3.02 to $1.24). However, Figure 4
demonstrates that the actual savings also depend on the on-
site storage capacity. In this case, with 12kWh of usable
energy storage, SmartCharge is only able to shift five hours
of consumption during the highest rate daytime periods to
the lowest rate nighttime periods. In particular, there is
not enough capacity to store low-cost nighttime energy for
use during the mid-price periods. As a result, consumption
in the late morning and early evening remains unchanged.
With 12kWh of storage capacity, the cost reduction falls to
32%, or $0.96 (from $3.02 to $2.06) for the day.

Of course, home consumption patterns and hourly rates
vary each day, which may decrease (or increase) a home’s
actual yearly savings. To understand why home consump-
tion patterns are important, consider the following scenario
using the Ontario TOU pricing plan. In Ontario, while
SmartCharge may fully charge its battery array during the
lowest rate period (7pm-7am), it may also consume that
stored energy during the day’s first high rate period (7am-
11am). If the home expects to consume at least the battery
array’s entire usable capacity during the day’s second high
rate period (5pm-9pm), it is cost-effective, assuming ideal
batteries, to fully charge the batteries during the mid-rate
period (11am-5pm) when electricity costs are 17% less than
in the high rate period. However, if the home only expects
to use 20% of the battery’s capacity during the subsequent
high rate period, it is only cost-effective to charge the bat-
tery 20% during the mid-rate period, since there will be an
opportunity to charge the battery further (for 33% less cost)
during the next low-rate period. In this case, charging the
battery more than 20% wastes money. Introducing more
price tiers, as in real-time markets, complicates the problem
further. As a result, we frame the problem of minimizing
the daily electricity bill as a linear optimization problem.

3.2 Problem Formulation
While batteries exhibit numerous limitations (e.g., charg-

ing rate, capacity), inefficiencies (e.g., energy conversion ef-
ficiency, self-discharge), and non-linear relationships (e.g.,
between capacity, lifetime, depth of discharge, discharge
rate, ambient temperature, etc.), SmartCharge’s normal op-
eration places it at the efficient end of these relationships.
The system mostly charges the battery once a day during
the night, which prevents stratification and extends battery
lifetime by limiting the number of charge-discharge cycles.
The self-discharge rate of valve-regulated absorbed glass mat
(VRLA/AGM) lead-acid batteries (commonly called sealed
lead-acid batteries), estimated at 1-3% per month, is in-
significant, amounting to no more than $13 per year for
a 12kWh battery array with an average electricity price
of 10¢/kWh. Sealed lead-acid batteries are generally 85-
95% efficient, while inverters are 90-95% efficient. For
SmartCharge’s battery array and inverter, we assume an
energy conversion efficiency of 80%, which mirrors the effi-
ciency rating for VRLA/AGM lead-acid batteries in a recent
Department of Energy report on energy storage technolo-

gies [22]. Thus, the batteries waste 1W for every 4W they
are able to store and re-use. Additionally, depth of discharge
(DOD) for sealed lead-acid batteries impacts their lifetime,
i.e., the number of charge-discharge cycles, due to the crys-
tallization of lead sulfate on the battery’s metal plates. In
our evaluation, we find that a DOD of 45% minimizes bat-
tery costs by balancing lifetime with usable storage capacity
for a typical battery designed for home photovoltaic (PV)
installations, e.g., the Sun Xtender PVX-2580L [24].

The ambient temperature and rate of discharge also have
an impact on usable capacity, according to Peukert’s law.
To maximize lifetime, we expect SmartCharge installations
to reside in a climate-controlled room with a temperature
near 25C. Rated capacity is typically based on a C/20 dis-
charge rate, i.e., the rate of discharge necessary to deplete
the battery’s capacity in 20 hours. A discharge rate higher
or lower than C/20 results in less or more usable capacity,
respectively. The home in our case study has averaged near
1kW per hour over the last two years, so a 20kWh battery
capacity approaches this rating. As we show in §5, reason-
able battery capacities for SmartCharge with a 45% DOD
are near or above 20kWh. Finally, sealed lead-acid batteries
are capable of fast charging up to a C/3 rate, i.e., charges to
full capacity in three hours [17]. In §5, we use a maximum
charge rate of C/4 for the usable storage capacity, which
translates to a C/8 rate for a battery used at 45% DOD.
As we show, faster charging rates are not beneficial, since
market-based pricing plans generally offer long low-rate pe-
riods for charging at night.

Given the constraints above, we frame SmartCharge’s lin-
ear optimization problem as follows. The objective is to
minimize a home’s electricity bill using a battery array with
a usable capacity (after accounting for its DOD) of C kWh.
We divide each day into T discrete intervals of length l from
1 to T . We then denote the power charged to the battery
during interval i as si, the power discharged from the bat-
tery as di, and the power consumed from the grid as pi. We
combine both the battery array and inverter inefficiency into
a single inefficiency parameter e. Finally, we specify the cost
per kWh over the ith interval as ci, and the amount billed
as mi. Formally, our objective is to minimize

∑T
i=1mi each

day, given the following constraints.

si ≥ 0, ∀i ∈ [1, T ] (1)

di ≥ 0, ∀i ∈ [1, T ] (2)

si ≤ C/4,∀i ∈ [1, T ] (3)

i∑
t=0

dt ≤ e ∗
i∑

t=0

st, ∀i ∈ [1, T ] (4)

(

i∑
t=0

st −
i∑

t=0

dt/e) ∗ I ≤ C, ∀i ∈ [1, T ] (5)

mi = (pi + si − di) ∗ I ∗ ci,∀i ∈ [1, T ] (6)

The first and second constraint ensure the energy charged
to, or discharged from, the battery is non-negative. The
third constraint limits the battery’s maximum charging rate.
The fourth constraint specifies that the power discharged
from the battery is never greater than the power charged to
the battery multiplied by the inefficiency parameter. The
fifth constraint states that the energy stored in the battery



Model 12am-7am 7am-11am 11am-5pm 5pm-7pm 7pm-12am Average (%)

SVM-Linear 14.77 27.32 46.72 18.49 47.03 29.5
SVM-RBF 22.44 63.77 71.93 17.84 35.01 42.51
SVM-Polynomial 4.74 4.62 6.48 7.99 5.14 5.75

Table 1: Average prediction error (%) over 40 day sample period for SVM with different kernel functions.

array, which is the difference between the energy charged to
or discharged from the battery over the previous time inter-
vals, cannot be greater than its capacity. Finally, the sixth
constraint defines the price the home pays for energy during
the ith interval. The objective and constraints define a lin-
early constrained optimization problem that is solvable us-
ing standard linear programming techniques. SmartCharge
solves the problem at the beginning of each day to deter-
mine when to switch between grid and battery power. Since
the approach uses knowledge of next-day consumption pat-
terns, we next detail statistical machine learning techniques
for predicting next-day consumption and quantify their ac-
curacy for our case study home.

4. ML-BASED DEMAND PREDICTION
As discussed in §3, solving SmartCharge’s linear optimiza-

tion problem requires a priori knowledge of next day con-
sumption patterns. A simple approach to predicting con-
sumption is to use past-predicts-future models that assume
an interval’s consumption will closely match either that in-
terval’s consumption from the previous day or the prior in-
terval’s consumption. As we show, the approach does not
work well for the multi-hour intervals in Ontario’s TOU pric-
ing plan. Instead, we develop statistical machine learning
(ML) techniques to accurately predict consumption each in-
terval. While our techniques have numerous applications,
e.g., dispatch scheduling in microgrids, we focus solely on
their application to SmartCharge in this paper.

We experimented with a variety of prediction tech-
niques, including Exponentially Weighted Moving Averages
(EWMA), Linear Regression (LR), and Support Vector Ma-
chines (SVMs) with various kernel functions, including Lin-
ear, Polynomial, and Radial Basis Function (RBF) kernels.
EWMA is a classic past-predicts-future model that predicts
consumption in the next interval as a weighted sum of the
previous interval’s consumption and an average of all pre-
vious intervals’ consumption. More formally, EWMA pre-
dicts the energy consumption for each interval on day k as
ÊC(k + 1) = αEC(k) + (1 − α)ÊC(k), where α is a con-
figurable parameter that alters the weight applied to the
most recent interval versus the past. Note that since each
interval’s power consumption is different, we apply EWMA
to each interval independently on a daily basis. As might
be expected, since home consumption patterns vary largely
around mealtimes, we found that predicting consumption
based on the preceding interval to be highly inaccurate.

Both LR and SVM are regression techniques that combine
and correlate numerous indicators (or features) of future
power consumption to predict next-day usage. We exper-
imented with a total of nine features: outdoor temperature
and humidity, month, day of week, previous day power, pre-
vious interval power, as well as whether or not it is a weekend
day or a holiday. We also included the EWMA prediction
as an additional feature. To predict next-day temperature
and humidity, we used weather forecasts from the National
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Weather Service available from the National Digital Forecast
Database (http://www.nws.noaa.gov/ndfd/). To evaluate
our techniques we used power data collected every second
from our case study home over a period of four months from
June to September 2011. For the LR and SVM models, we
used the first 70 days of the data set for model training, and
the last 40 days for evaluating the model’s accuracy. We use
the LibSVM library [5] to implement our LR and SVM mod-
els. Our SVM models use the nu-SVR regression algorithm,
which we found always performed better than the ε-SVR al-
gorithm [5]. For simplicity, we only predict consumption for
the Ontario TOU rate periods in Figure 3.

Before training our model, we employed Correlation-based
Feature Subset Selection (CFSS) to refine the number of
input features [14]. CFSS evaluates the predictive ability of
each individual feature along with the degree of redundancy
between features. We apply CFSS separately for each of
the five intervals, since the pattern of power consumption
varies each interval. CFSS reduces the number of features
in prediction model from nine to: four for 12am-7am, seven
for 7am-11am, seven for 11am-5pm, six for 5pm-9pm, and
five for 9pm-12am. In general, we find that more features
are useful during periods with high, variable consumption.

We then experimented with multiple variations of LR
models, including least squares and different regularized
models (LASSO, ElasticNet, and Ridge Regression), since
we found that temperature, humidity, and past data were
approximately linear with respect to power consumption.
However, our best performing LR model (ElasticNet) had
an average error of 37%. EWMA performed much better,
although Figure 5 demonstrates its limitations in predicting
future consumption. The figure shows actual power con-
sumption each day during the first interval (12am-7am), as
well as EWMA (α = 0.35) and the SVM-Polynomial model.
EWMA is unable to predict large spikes or dips in consump-
tion before they occur. Instead, EWMA’s predictions never
vary too far from the mean usage. In contrast to EWMA,
the SVM approach is able to partially predict many of the
spikes and dips in consumption. Over our 40 day testing pe-
riod, we found that SVM-Polynomial had an average error
of only 5.75%. The SVM model with the Linear and RBF
kernel performed worse than EWMA, as Table 1 shows, with
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time and TOU prices in our case study home.

a 29.5% and 42.5% average error, respectively. As a result,
in §5 we use SVM-Polynomial to evaluate SmartCharge.

5. EXPERIMENTAL EVALUATION
To illustrate SmartCharge’s potential for savings, we use

the home described in §3 to evaluate the savings using real
hourly real-time and TOU rate plans in simulation. We
also implement a small-scale SmartCharge prototype using
a home UPS system and a few household appliances. For
real-time prices, we use rates from June to September 2011
in the hourly day-ahead market run by the New England
Independent System Operator (ISO), which operates the
electricity market in our home’s region. We use histori-
cal market data publicly available that ISOs are required
to publish [20]. Since we use day-ahead market prices, we
have perfect knowledge of next-day prices. For TOU pric-
ing, we use the Ontario rate plan from Figure 3. While
our home is not located in Ontario, it lies at the same lati-
tude and experiences a similar climate. Thus, the prices are
not entirely mismatched to our home’s consumption profile.
In our experiments, we vary the pricing plans and battery
characteristics to see how future price trends and battery
technology impact savings. To predict next-day usage, we
use the SVM-Polynomial model described §4. Finally, to
quantify the optimal savings, we compare with an oracle
that has perfect knowledge of next-day consumption.

Unless otherwise noted, our experiments use home power
data from the same 40 day period in late summer as the
previous section. We use CPLEX, a popular integer and lin-
ear programming solver, to encode and solve SmartCharge’s
optimization problem, given next-day prices and expected
consumption levels. Note that we consider only usable stor-
age capacity in kWh in this section, which is distinct from
(and typically much less than) battery capacity. In the next
section, we discuss the battery capacity necessary to attain
a given storage capacity. As mentioned in §3, we use an en-
ergy conversion efficiency of 80% for the battery and a C/4
charging rate for the usable storage capacity.
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Figure 8: SmartCharge’s savings as a function of the
charging rate for a 12kWh storage capacity.

5.1 Household Savings
Figure 6 shows the average savings per day in USD for

both the real-time and TOU rate plans over the 40 day pe-
riod, as a function of storage capacity, while Figure 7 shows
the savings as a percentage of the total electricity bill. The
graphs show that a storage capacity beyond 30kWh does
not significantly increase savings. Further, smaller stor-
age capacities, such as 12kWh, are also capable of reduc-
ing costs, near 10% for SmartCharge. If we extrapolate the
savings over an entire year, we estimate that SmartCharge
with 24kWh of storage is capable of saving $101.59. Fi-
nally, the graphs show that SmartCharge’s performance is
close to that of an oracle with perfect knowledge of future
consumption: mispredictions only cost an estimated $12.09
each year with 24kWh storage capacity, or near 12% of the
total savings. Due to different price levels, the TOU plan
saves slightly more dollars per day, while the real-time plan
saves a larger percentage of the bill. As we show next, both
the pricing plan and battery characteristics impact the sav-
ings. Since the savings for both the real-time and TOU rate
plan are similar, for clarity we focus our remaining results
on the TOU rate plan, which is more widely used today.

The experiments above assume that we use today’s bat-
tery characteristics and price levels. Of course, a more effi-
cient battery and inverter would increase the usable storage
capacity in a battery array. As the experiments above in-
dicate, increasing storage capacity increases the savings up
to a 30kWh capacity. Figure 8 demonstrates that the maxi-
mum charging rate has a minimal effect on savings, since the
TOU rate plan (as well as the real-time plan) offer a long
period of relatively low rates during the night for charging.
The charging rate need only be high enough, e.g., a C/10
rate, to charge the battery over these periods. Figures 9(a)
and (b) show how the savings change if we vary either the
average price (while keeping price ratios constant) or the
peak-to-off-peak price ratio (while keeping the average price
constant) for a 12kWh capacity. The graphs demonstrate
that, as expected, rising prices or ratios significantly impact
the savings. In the former case, the relationship is linear,
with a doubling of today’s average price resulting in a dou-
bling of the savings for SmartCharge. Thus, if average elec-
tricity prices continue to rise 5% per year, as in the past,
SmartCharge’s expected savings should also increase at 5%
per year. In the latter case, while the savings rate decreases
slowly as the ratio increases, the savings nearly doubles (up
88%) if the current ratio increases slightly from 1.6 to 2.

Finally, Figure 10 shows the additional savings homes are
able to realize by sharing battery capacity with neighbors.
Sharing is beneficial when homes exhibit peaks at different
times by allowing them to share the available storage ca-
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Figure 9: Varying the average electricity price (a) and the peak-to-off-peak price ratio (b) impacts savings.
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Figure 10: Additional savings (in % and $) from
sharing 12kWh and 24 kWh between homes.

pacity. For the experiment, we use power data for a single
day from a pool of 353 additional homes we monitor (de-
scribed below), such that each point is an average of twenty
runs with a set of k randomly chosen homes. We report
both the additional dollar and percentage savings per home.
We include 90% confidence intervals for the dollar savings.
The experiment shows that sharing a battery array between
homes results in additional savings as we increase the num-
ber of homes. As expected, more homes require more storage
capacity to reap additional benefits. With 10 homes sharing
24kWh per home, the additional savings is 25%. However,
with 12kWh per home the percentage savings does not in-
crease beyond 15% when sharing with more than four homes.

5.2 Grid Peak Reduction
The purpose of real-time and TOU rate plans is to lower

peak electricity usage across the entire grid. We evaluate
the potential grid-scale effect of SmartCharge using power
data from a large sampling of homes. We gather power
data at scale from thousands of in-panel energy meters that
anonymously publish their data to the web. Since we do not
know if the meters are installed in commercial, industrial,
or residential buildings, we filter out sources that do not
have typical household power levels and profiles, i.e., peak
power less than 10kW and average power less than 3kW. We
also filter out sources with large gaps in their data. After
filtering, we select 435 homes from the available sources.

Figure 11(a) plots the peak power over all the homes
as a function of the fraction of homes using SmartCharge
with 12kWh of energy storage. The figure shows that
SmartCharge is capable of reducing peak power by 20%
when 22% of homes use the system, as long as the homes
randomize when they begin overnight charging. If everyone
begins charging at the same time, e.g., at 12am at night, the
peak reduction decreases to a maximum of only 8%. Even
using randomized charging, if more than 22% of consumers
install SmartCharge, then the peak reduction benefits begin

to decrease, due to a nighttime“rebound peak”. Once 45% of
consumers use the system the evening rebound peak actually
becomes larger than the original peak without SmartCharge.
The same point occurs when only 24% of homes use the
system without randomized charging. Of course, the ex-
periments assume that prices do not change in response to
homes installing SmartCharge, i.e., a large fraction of homes
install the system simultaneously. A more plausible and re-
alistic scenario is that the rate of adoption slowly rises with
the differential between the peak and off-peak prices. In this
scenario, SmartCharge’s load shifting would alter prices in
each rate period. At some point, as Vytelingum et al.[28]
formally show, the price changes would make the system
increasingly less attractive for new users, as the difference
between peak and off-peak prices would approach zero.

We discuss SmartCharge’s economics at scale further in
§6. Figure 11(b) shows grid power usage over time, with
0% and 22% of the homes using SmartCharge with random-
ized charging, and demonstrates how SmartCharge causes
demand to “flatten” significantly. Such a peak reduction
would have a profound effect on generation costs, likely low-
ering them by more than 20% [18]. Finally, with 22% of
homes using SmartCharge, the increase in total energy us-
age is only 2%. The result demonstrates that the benefits of
flattening likely outweigh the increased energy consumption
due to battery/inverter inefficiencies.

5.3 Lab Prototype Results
We constructed a small-scale proof-of-concept prototype

using a home UPS connected to a few common house-
hold appliances. While not typically designed for entire
homes, today’s UPSs include the inverters, transfer switches,
charge controllers, battery enclosure, cabling, and battery
sensors necessary for a SmartCharge system in a single ap-
pliance. We chose the APC Smart-UPS 2200VA XL as our
UPS, which includes software to monitor its capacity and
charge/discharge state. The UPS has a usable capacity of
450Wh, but is expandable to 16kWh, at a discharge rate
of 100W/s. The UPS switches to battery in roughly 25ms,
which is less than the holdup time, i.e., the duration a device
is able to sustain operation without power, in modern power
supplies. We experimented with both charging and discharg-
ing the UPS. The unit charges from 45% to 100% capacity
in 80 minutes at a linear rate, and discharges in 35 minutes
with an average load of 384W. We connect a refrigerator,
freezer, dehumidifier, and two laptops to the UPS system.
We then emulate a TOU rate plan over a two hour period,
where the first hour corresponds to a peak period and the
second corresponds to an off-peak period. Figure 12 shows
that in this simple case SmartCharge uses battery power
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Figure 11: With 22% of homes using SmartCharge, the peak demand decreases by 20% (a) and demand
flattens significantly (b).
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Figure 12: Our UPS-based prototype reduces peak
usage by 69% when using a few common appliances.

during the peak period and then switches to grid power dur-
ing the off-peak period. Without SmartCharge, during the
peak period the grid load was on average 298W and during
the off-peak period it was 128W. With SmartCharge, the
peak period has an average grid load of only 91W while the
off-peak period has an average load of 324W, resulting in a
69% reduction in peak electricity consumption.

6. COST-BENEFIT ANALYSIS
The previous section shows that SmartCharge cuts an

electric bill by 10-15% with today’s market-based pricing
plans. In this section, we first discuss SmartCharge’s return
on investment (ROI), including its installation and mainte-
nance costs, and then discuss its advantages over centralized
energy storage. We ground our discussion using price quotes,
primarily from the altE store (http://www.altestore.com),
for widely-available commercial products.

6.1 Return-on-Investment
In many instances, homes already have the necessary in-

frastructure to implement SmartCharge. For example, many
homes in developing countries already utilize UPSs because
of instability in the power grid. As we discuss below, in the
future, homes with photovoltaic (PV) systems may require
on-site energy storage to balance an intermittent supply with
demand without the aid of net metering. Batteries in electric
vehicles (EVs) could also serve as energy storage. In each
case, the homes already include the required infrastructure
and battery capacity to implement SmartCharge. Since the
homes would not need new infrastructure, the ROI is pos-
itive in these cases. Below, we discuss the ROI for homes
that do not already have the necessary infrastructure.

Table 2 shows cost estimates for purchasing and installing
SmartCharge’s components. For the inverter, we assume
Apollo Solar’s True Sinewave Inverter, which combines an
inverter, battery charger, and transfer switch into a sin-

Component Total

Inverter $2099.00
Battery Charger -
Transfer Switch -
Inverter Gateway $287.00
Energy Monitor $200.00
Server $159.00
Battery Enclosure $1426.00
Cabling $200.00
Labor $500.00

Total $4871.00

Table 2: Estimated cost breakdown for installing
SmartCharge’s supporting infrastructure.

gle appliance. To read battery state and control the ap-
pliance, we attach an additional communications gateway
available for the inverter. Numerous home energy meters are
available: The Energy Detective (TED) is a popular choice
and costs $200. Nearly any server is adequate to support
SmartCharge’s software. We use an embedded DreamPlug
server at a cost of $159 as the gateway in the homes we now
monitor. To hold the battery array, we assume two MNEBE-
C 12-battery modular enclosures. Finally, we estimate $200
for cabling and a day’s labor at $500 for installation. The
total estimated cost, excluding batteries, is $4871.

Of course, SmartCharge’s largest expense is its battery
array. Sealed VRLA/AGM lead-acid batteries are the dom-
inant battery technology for stationary home UPSs and PV
installations, due to their combination of low price, high ef-
ficiency, and low self-discharge rate. By contrast, lithium
ion batteries, while lighter and more appropriate for EVs,
are much more expensive. We use, as an example, the Sun
Xtender PVX-2580L with a 3kWh rated capacity (at a C/20
discharge rate), which costs $570 [24] and is designed for
deep-cycle use in home PV systems. The battery’s manual
specifies its lifetime as a function of its number of charge-
discharge cycles and the DOD each cycle. We use the data
to estimate the yearly cost of batteries—in $/kWh of us-
able storage capacity—as a function of the depth of dis-
charge (Figure 13) amortized over their lifetime, assuming
SmartCharge’s typical single charge-discharge cycle per day.
The usable storage capacity takes DOD into account: a bat-
tery rated for 10kWh operated at 50% depth of discharge
has a usable capacity of only 5kWh. Figure 13 demonstrates
that cost begins to increase rapidly after a 45% DOD, with
an estimated cost of $118/kWh of usable capacity.

In the U.S., SmartCharge likely qualifies for a Residen-
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Figure 13: Amortized cost per kWh as a function of
depth of discharge.

tial Renewable Energy Tax Credit, reducing its cost by
30%. Additionally, U.S. state and local governments offer an
assortment of tax incentives for energy-efficiency improve-
ments [7], which we estimate lower costs by 20%. Despite the
advantages, today’s lead-acid batteries are still too expen-
sive to produce a positive ROI at current electricity prices.
For instance, while 24kWh of usable storage capacity saves
$91.25 per year using the Ontario TOU rate plan, batteries
alone would cost $1416 per year assuming the take breaks
above. However, recent advancements in battery technology
promise to dramatically reduce battery costs in the near fu-
ture. Lead-carbon batteries have an expected lifetime 10x
longer than today’s sealed lead-acid batteries at roughly the
same cost [9, 12, 22]. Figure 14 shows the extended lifetime
using data from recent tests conducted at Sandia National
Labs comparing today’s sealed lead-acid battery and a new
lead-carbon battery (the UltraBattery) [22].

Lead-carbon batteries combined with modest and ex-
pected price increases (25%) and peak-to-off-peak ratios
(25%) would produce a positive ROI for SmartCharge in
a few years. Assuming this scenario, Figure 15 plots
SmartCharge’s yearly expense, including battery and infras-
tructure costs (amortized over 20 years), along with its esti-
mated yearly savings for our case study home, as a function
of usable storage capacity. Note that our ROI estimates do
not include the savings from lowering generation costs for
all homes by reducing peak demands. As Figure 11 shows,
enabling only 22% of homes with SmartCharge would dra-
matically reduce peak demands, and, hence, generation costs
for all homes, even those that have not invested in the sys-
tem. Since all homes benefit from lower prices, utilities may
consider subsidies that spread costs across all consumers,
which for 22% of homes would lower costs by nearly 5X.

Alternatively, utilities might consider modifying their
pricing plans to incentivize SmartCharge in all homes by in-
creasing the fraction of the bill based on peak usage. While
many utilities charge large consumers based on their peak
usage over a day or month [1], residential bills typically do
not include such a charge. Incorporating a substantial peak
usage charge in electric bills would prevent the large rebound
peaks in Figure 11 by directly incentivizing homes to flatten
demand, rather than shift as much demand as possible to
low-cost periods (causing the rebound peak). With market-
based plans that only charge per-kWh, as more consumers
install SmartCharge and shift their demand to low-cost peri-
ods, the price difference between the low-cost and high-cost
periods would lessen to reflect the new demand distribution,
thus lowering the ROI and discouraging additional homes
from installing the system. A substantial peak-usage charge
would maintain the financial incentives and continue to flat-
ten demand (and prevent rebound peaks) as the fraction of
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Figure 15: SmartCharge’s projected yearly expense
and savings assuming recent battery advancements.

SmartCharge-enabled homes approaches 100%.
A full discussion of SmartCharge’s impact on the eco-

nomics of electricity generation is outside the scope of this
paper. However, it is clear that today’s market-based pricing
plans assume that the price elasticity of electricity demand
is low, i.e., changes in price do not have a significant impact
on demand. SmartCharge fundamentally changes this fact
by making demand nearly fully elastic with price.

6.2 Distributed vs. Centralized
Utilities have already begun to deploy large, centralized

battery arrays to reduce peak usage and integrate more wind
and solar farms, which require substantial energy storage to
match an intermittent supply with variable demand. How-
ever, distributing battery storage throughout the grid has a
number of inherent advantages over a centralized approach.
In particular, home energy storage may serve as backup
power during extended blackouts, lessening the economic
impact of power outages and promoting a more stable grid.
A centralized system also introduces a single point of failure.
Further, substantial home energy storage may be a catalyst
for implementing microgrids, where matching supply and
demand is difficult without an energy buffer. Storing en-
ergy at its point-of-use also reduces transmission losses by
eliminating losses incurred from generator to battery array.

Finally, perhaps the most important argument for in-
stalling many distributed battery arrays in homes, rather
than large centralized arrays, is to encourage distributed
generation without relying on net metering. While today’s
PV installations typically use net metering to offset costs
by selling energy back to the grid, it is not a scalable long-
term solution. Injecting significant quantities of power into
the grid from unpredictable and intermittent renewables has
the potential to destabilize the grid by making it difficult to
balance supply and demand. SmartCharge provides an al-
ternative to net metering to offset costs in home PV systems
that use batteries instead of net metering. We are currently
studying how to include renewables in SmartCharge’s al-



gorithm. Our initial results suggest that homes with PV
installations also benefit from SmartCharge.

7. RELATED WORK
Daryanian et al. [6] first identified the opportunity to ex-

ploit energy storage in real-time electricity markets using a
linear programming formulation similar to ours. However,
their problem formulation ignores many of the battery inef-
ficiencies that influence the realizable savings. Further, the
work does not address stochastic demand in residential set-
tings, whereas we develop machine learning techniques to
accurately predict next-day consumption. Finally, we con-
duct experiments to analyze the peak reduction effects of
energy storage in the grid using real data, as well as analyze
the ROI for installing and maintaining the system.

More recent work explores a similar problem as ours, but
from different perspectives. For example, van de ven et
al. [27] model the problem as a Markov Decision Process
and claim that there is a threshold-based stationary cost-
minimizing policy. The policy is optimal assuming that con-
sumption is independent and identically distributed (i.i.d.).
A preliminary evaluation with simulated demands following
an i.i.d. distribution shows cost savings up to 40%. In con-
trast, we take a more experimental approach using traces of
real home power usage and market-based rate plans. For the
home in our case study, which has an aggregate power usage
close to the average U.S. home, we show that the optimal
savings is never more than 20% with realistic energy stor-
age capacities (< 60kWh). Rather than solving the problem
with respect to a particular demand distribution, we distill
the problem to a linear program that uses our prediction
model of future consumption levels

Vytelingum et al. [28] and Carpenter et al. [3] both focus
on the economics of storage at scale, which we also discuss.
Vytelingum et al. show that for sufficiently low adoption
rates, the difference between the peak and off-peak prices ap-
proaches zero, reducing the financial incentives for installing
energy storage. Similarly, in parallel with our work, Car-
penter et al. also show that today’s pricing schemes may
increase the grid’s peak demand at scale if prices do not
adjust to demand. The work studies the profitability of a
variety of different pricing schemes, and their effectiveness
in decreasing grid demand peaks at scale. Koutsopoulos et
al. [16] explore the problem from the perspective of a utility
operator. In this case, the utility controls when to charge
and discharge battery-based storage to minimize generation
costs, assuming the marginal cost to dispatch generators is
similar to Figure 1 from §1. In contrast to our problem, the
approach is more applicable to large centralized energy stor-
age facilities. We discuss the trade-offs between distributed
and centralized energy storage in §6.2.

Prior work has also explored combining energy storage
with market-based electricity prices to cut electricity costs
in data centers [13, 26]. The approach is different, since the
authors assume that neither future prices nor consumption
is known or predictable. As mentioned above, we assume the
use of day-ahead electricity prices, where next-day prices are
well-known. Household consumption patterns are also more
predictable and regular than data center workloads, which
vary widely based on application and server characteristics.
Our ROI analysis is also not directly comparable, since data
centers already employ double-conversion UPSes to ensure
operation during grid outages. Thus, data centers already

incur the 10-20% loss from battery inefficiency, which in-
creases their ROI by increasing savings relative to their base-
line and eliminating additional installation and maintenance
costs.

8. CONCLUSION
In this paper, we explore how to lower electric bills using

SmartCharge by storing low-cost energy for use during
high-cost periods. We show that typical savings today
are 10-15% per home with the potential for significant
grid peak reduction (20% with our data). Finally, we
analyze SmartCharge’s costs, and show that recent battery
advancements combined with an expected rise in electricity
prices may make SmartCharge’s return on investment
positive for the average home within the next few years.
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